Definicji Heinego. Jeśli dla dowolnego ciągu (xn) zbieżnego do x0 (zarówno z lewej jak i z prawej strony), wartości (f(xn)) zbiegają do liczby g, to g jest granicą funkcji f(x) w punkcie x0. Zapis matematyczny: limx→x0 f(x) = g ⇔ ∀xn→x0 limxn→x0 f(xn) = g. Na studiach możemy spotkać się z definicją Cauchy'ego: Jak w prosty sposób zrozumieć, czym są granice ciągów i jak bardzo przydaje się to do ich obliczania Jakie są dwa podstawowe, elementarne i wykorzystywane na każdym kroku wzory na granice, o istnieniu których wielu nawet nie ma pojęcia, zaczynając naukę (a) Podstawowe wzory na liczenie granic. Rozwiązać jeszcze raz Zadania 2.17 – 2.40 z Zestawu Zadań 2 “Ciągi liczbowe”. (b) Granice ciągów liczone z wykorzystaniem wzorów skróconego mnożenia. Rozwią-zać jeszcze raz Zadania 2.41 – 2.47 z Zestawu Zadań 2 “Ciągi liczbowe”. (c) Granice ciągów z wyrażeniami wykładniczymi. Na tej Lekcji pokazuję jak rozwiązywać granice ciągów przy pomocy wzoru z liczbą 'e' w wyniku. Odkryjemy, skąd w matematyce wzięła się liczba e :) Spis treści. warunki kiedy stosujemy tą metodę [01:09] wzór na liczbę e [01:59] granice sprowadzalne do wzoru na liczbę e - przykłady 1-4 [03:43] Klasówki i testy - Rachunek różniczkowy zadania. 12.1 Test (R)Granice funkcji, granice jednostronne, ciągłość funkcji i własności funkcji ciągłych. Popularne. 12.1 Klasówka (R)Granice funkcji, granice jednostronne, ciągłość funkcji i własności funkcji ciągłych. 12.2 Test (R)Pochodne funkcji wymiernych. Logarytm iloczynu, ilorazu i potęgi o wykładniku naturalnym. >. Klasówka Figury, które mają środek symetrii. Rozpoznawanie i wskazywanie środka symetrii. >. Zestaw wzorów z geometrii analitycznej: współrzędne wektora, iloczyn skalarny i jego własności. vPXkiE. Granicą ciągu nazywamy wartość, w której otoczeniu znajdują się prawie wszystkie wyrazy danego ciągu. Granicę ciągu \(a_n\) zapisujemy w postaci: \({\displaystyle \lim_{n \to \infty} a_n}\). W przypadku prostych ciągów, liczenie granicy jest niezwykle banalne. Wystarczy policzyć kilka pierwszych wyrazów, aby łatwo zgadnąć do jakiej liczby zbieżny jest dany ciąg. Przykładowo: \({\displaystyle \lim_{n \to \infty} {1 \over n}}\) \(n\) 1 2 3 4 \({ \rightarrow \infty}\) \({1 \over n}\) 1 \({1 \over 2}\) \({1 \over 3}\) \({1 \over 4}\) \({\rightarrow 0}\) Warto wspomnieć, że ciąg może być rozbieżny do \({+\infty} \) lub \({- \infty}\); może również nie mieć granicy w ogóle. Podstawowe własności granicy ciągu: Jeżeli a jest dowolną liczbą rzeczywistą oraz \({|a| 1\), to: \({\displaystyle \lim_{n \to \infty} a^n = \infty}\). Jeżeli \(a>0\), to \({\displaystyle \lim_{n \to \infty} \sqrt[n]{a}} =1\). Niech \({\displaystyle \lim_{n \to \infty} a_n} = a\) oraz \({\displaystyle \lim_{n \to \infty} b_n = b}\), wtedy: \({\displaystyle \lim_{n \to \infty} (a_n + b_n)} = a+b\) \({\displaystyle \lim_{n \to \infty} (a_n - b_n)} = a-b\) \({\displaystyle \lim_{n \to \infty} (a_n \cdot b_n)} = {a \cdot b}\) \({\displaystyle \lim_{n \to \infty} {a_n \over {b_n}}} = {a \over b}\) (oczywiście \({b_n \neq 0, b \neq 0}\)) Przykładowo, jak wyznaczyć granicę ciągu \(a_n= {1 \over n} +5\)? \({\displaystyle \lim_{n \to \infty} ({1 \over n} +5)}\) Wiemy, że w tym przypadku \({{1 \over n} \quad \rightarrow \quad 0}\), zatem: \({\displaystyle \lim_{n \to \infty} ({1 \over n} +5)} = 5\). Inną definicją granicy ciągu z jaką możemy się spotkać jest: Stałą liczbę g nazywamy granicą ciągu, jeśli: \({\forall_{\epsilon >0} \exists_{ N }\forall_{ n>N}} |a_n - g|N, spełniony jest warunek \(|a_n - g| <{\epsilon}\). Warto o tym wspomnieć, ponieważ zdarza się rozwiązywać granice ciągów z tej definicji. Jeżeli limn→∞ an =a i limn→∞ bn =b to: limn→∞ ( an + bn ) = a+b , limn→∞ ( an - bn ) = a-b , limn→∞ ( an bn ) = ab , ∃ k∈N+ ∀ n>k ( bn≠0 ∧ b≠0 ) ⇒ limn→∞ an bn = ab , ∃ k∈N+ ∀ n>k ( an ≥ bn ⇒ a≥b ) . Marysia17 Użytkownik Posty: 3 Rejestracja: 2 paź 2006, o 22:04 Płeć: Kobieta Lokalizacja: Gdynia wzór na sumę ciągu Sprawa jest trochę zawiła, jak dla średnio mądrej licealistki. A mianowicie problem tkwi: 1. W znalezieniu wzoru sumy ciągu u(n)=n(n+1) i wykorzystaniu tego wzoru do znalezienia sumy ciągu u(n)=n^2. 2. analogicznie do ad. 1- suma ciągu u(n)=n(n+1)(n+2) i znalezienie sumy ciągu u(n)=n^3 3. analogicznie do suma ciągu u(n)=n(n+1)(n+2)(n+3) i znalezieniu sumy ciągu u(n)=n^4 4. Wykorzystaniu powyzszego do ustalenia wzoru na sume ciągu u(n)=n^k Dziękuję za wszelką pomoc. Marysia17 Użytkownik Posty: 3 Rejestracja: 2 paź 2006, o 22:04 Płeć: Kobieta Lokalizacja: Gdynia wzór na sumę ciągu Post autor: Marysia17 » 3 paź 2006, o 16:26 Zależy mi najbardziej na podpunkcie 4. Ostatnio zmieniony 5 paź 2006, o 01:37 przez Marysia17, łącznie zmieniany 1 raz. mol_ksiazkowy Użytkownik Posty: 8514 Rejestracja: 9 maja 2006, o 12:35 Płeć: Mężczyzna Lokalizacja: Kraków Podziękował: 2754 razy Pomógł: 703 razy wzór na sumę ciągu Post autor: mol_ksiazkowy » 3 paź 2006, o 16:46 \(\displaystyle{ \Bigsum_{k=1}^n k(k+1)(k+2)...(k+r)=\frac{1}{r+2}n(n+1)(n+2)....(n+r)(n+r+1)}\) Marysia17 Użytkownik Posty: 3 Rejestracja: 2 paź 2006, o 22:04 Płeć: Kobieta Lokalizacja: Gdynia wzór na sumę ciągu Post autor: Marysia17 » 3 paź 2006, o 17:12 A wzór na sumę ciągu u(n)=1^k+2^k+3^k...n^k z jakimś wyjaśnieniem jest możliwy do stworzenia? mol_ksiazkowy Użytkownik Posty: 8514 Rejestracja: 9 maja 2006, o 12:35 Płeć: Mężczyzna Lokalizacja: Kraków Podziękował: 2754 razy Pomógł: 703 razy wzór na sumę ciągu Post autor: mol_ksiazkowy » 3 paź 2006, o 19:15 Marysia17 napisała: A wzór na sumę ciągu u(n)=1^k+2^k+3^k...n^k z jakimś wyjaśnieniem jest możliwy do stworzenia?Ależ tak!! ogólnie co widać łatwo u(n) jest wielomianem zmiennej n stopnia k+1....ale istnieje także możliwość takiego zapisu: \(\displaystyle{ u(n)=1^k+2^k+3^k+....+n^k= \bigsum_{i=1}^{k} a_{i,k} {n+i\choose k+1}}\) gdzie wspolczynniki sa mozliwe do odczytania z tablicy: \(\displaystyle{ a_{i,k}}\), to i-ty element k tego wiersza .........................1....................... ...................1..........1................. ............1...........4..........1........... .......1.........11.........11.........1..... ..1........26.........66........26.........1 ................................................. wg reguły: Każdy element wewnatrz tabilcy jest sumą jego dwóch górnych sąsiadów pomnożonych odpowiedznio przez numer lewego (prawego ) skosu, w którym się on znajduje, np. 26= 4*1+ 2*11, bo 2 jest w czwartym skosie prawym, a 11 jest w drugim skosie lewym itd. i tak np.: \(\displaystyle{ u(n)=1^4+2^4+3^4+...+n^4= {n+1\choose 5}+11 {n+2\choose 5}+11{n+3\choose 5}+{n+4\choose 5}}\) WZORY Z GRANIC CIĄGÓW, FUNKCJI I ZBIEŻNOŚCI SZEREGÓW ANALIZA MATEMATYCZNA- opracowała Joanna Pomianowska 1. działania na „nieskończonościach” +∞∙𝑎= +∞, gdy 𝑎> 0−∞, gdy 𝑎 1 nie istnieje, gdy 𝑎≤−1 lim𝑛→∞ 𝑎𝑛= 1 lim𝑛→∞ 𝑛𝑛= 1 4. granice funkcji lim𝑥→±∞ 1 + 𝑘𝑥 𝑥=𝑒𝑘 5. kryteria zbieżności szeregów 𝑎𝑛∞𝑛=1 o wyrazach 𝑎𝑛 dodatnich Cauchy’ego lim𝑛→∞ 𝑎𝑛𝑛 1 szereg rozbieżny = 1 przypadek wątpliwy d’Alemberta lim𝑛→∞𝑎𝑛+1𝑎𝑛 1 szereg rozbieżny = 1 przypadek wątpliwy 𝑎𝑛∞𝑛=1 ≤ 𝑏𝑛∞𝑛=1 1 , szereg zbieżny 0 < 𝛼≤1 , szereg rozbieżny ∞𝑛=16. Przydatne wzory 𝑎𝑥2+𝑏𝑥+𝑐=𝑎 𝑥−𝑥1 𝑥−𝑥2 Wzór na dla \( n-ty \) wyraz ciągu geometrycznego dla \( \left(a_{n} \right) \) o pierwszym wyrazie \( a_{1} \) i ilorazie \( q \): \[ a_{n}=a_{1}*q^{n-1} \] dla \( n\geq 2 \) Wzór na sumę \( S_{n}=a_{1}+a_{2}+…+a_{n} \) początkowych \( n \) wyrazów ciągu geometrycznego: \[ S_{n}=a_{1}*\frac{1-q^{n}}{1-q} \] dla \( q\neq 0 \) \[ S_{n}=n*a_{1} \] dla \(q=0 \) Między sąsiednimi wyrazami ciągu geometrycznego zachodzi związek: \[ a_{n}^{2}=a_{n-1}*a_{n+1} \] Procent składany Jeżeli kapitał początkowy \(K \) złożymy na \( n \) lat w banku, w którym oprocentowanie lokat wynosi \( p% \) w skali rocznej i kapitalizacja odsetek następuje po upływie każdego roku trwania lokaty, to kapitał końcowy \( K_{n} \) wyraża się wzorem: \[ K_{n}=K*\left(1+\frac{p}{100} \right)^{n} \]

wzory na granice ciągów