$\begingroup$ The concept of "solving" applies to equations $\cos (2 \tan^{-1} x) = 0$, not expressions like $\cos (2 \tan^{-1} x)$. I suggest editing the body of the question with an actual statement of what you're trying to do (to simplify, perhaps?) and changing the title appropriately. $\endgroup$
Using Pythagorean identities, sin 2 x + cos 2 x = 1. = (sin 2 x - cos 2 x) (1) = sin 2 x - cos 2 x = RHS Hence proved. Pythagorean identities are useful in solving the problems related to heights and distances. Pythagorean identities are used to find any trigonometric ratio when another trigonometric ratio is given. Example: Find cos x when sin
Welcome to Sarthaks eConnect: A unique platform where students can interact with teachers/experts/students to get solutions to their queries. Students (upto class 10+2) preparing for All Government Exams, CBSE Board Exam, ICSE Board Exam, State Board Exam, JEE (Mains+Advance) and NEET can ask questions from any subject and get quick answers by subject teachers/ experts/mentors/students.
= 2 − (1 − cos 2 2 x) = 1 + cos 2 2 x. Hence Proved. Was this answer helpful? 2. Similar Questions. Q1. If s i n 4 x 2 + c o s 4 x 3 = 1 5, prove that t a n 2 x
Proving Trigonometric Identities - Basic. Trigonometric identities are equalities involving trigonometric functions. An example of a trigonometric identity is. \sin^2 \theta + \cos^2 \theta = 1. sin2 θ+cos2 θ = 1. In order to prove trigonometric identities, we generally use other known identities such as Pythagorean identities.
8. You use the identity (e.g. solving from cos(2x) = 2cos2 x − 1 cos ( 2 x) = 2 cos 2 x − 1 ): cos2 x = 1 + cos(2x) 2 cos 2 x = 1 + cos ( 2 x) 2. Addendum: the previous hint will give you the easiest solution, but you mentioned an attempt with integration by parts - that would work too: ∫cos2 xdx ⇒ 2 ∫cos2 xdx = ∫ cos xd sin x = cos
eIv8. Let x = tan θ. Then, θ = tan−1 x. `:. sin^(-1) (2x)/(1+x^2 ) = sin^(-1) ((2tan theta)/(1 + tan^2 theta)) = sin^(-1) (sin 2 theta) = 2theta = 2 tan^(-1) x` Let y = tan Φ. Then, Φ = tan−1 y. `:. cos^(-1) (1 - y^2)/(1+ y^2) = cos^(-1) ((1 - tan^2 phi)/(1+tan^2 phi)) = cos^(-1)(cos 2phi) = 2phi = 2 tan^(-1) y` `:. tan 1/2 [sin^(-1) "2x"/(1+x^2) + cos^(-1) (1-y^2)/(1+y^2)]` `= tan 1/2 [2tan^(-1) x + 2tan^(-1) y]` `= tan[tan^(-1) x + tan^(-1) y]` `= tan[tan^(-1) ((x+y)/(1-xy))]` `= (x+y)/(1-xy)`
So for this question you can use either the product rule or the quotient rule and I'll run through them the quotient rule:The quotient rule says that if you have h(x)=f(x)/g(x)Then h'(x) = (f'(x)g(x)-f(x)g'(x))/(g(x))^2So using f(x)=cos(2x) and g(x)=x^1/2then f'(x)=-2sin(2x) and g'(x)=1/2x^-1/2Plugging this into our formula gives ush(x) = (-2x^1/2sin(2x)-1/2x^-1/2cos(2x))/xAlways remember to simplify afterwards which gives us(-2x^1/2sin(2x)-1/2x^-1/2cos(2x))/xSecond the product rule:What the product rule says is that ifh(x) = f(x)g(x)then h'(x) = f(x)g'(x) + f'(x)g(x)So if we say that h(x) = cos(2x)/x^1/2Then we can say that f(x) = cos(2x) and g(x) = x^-1/2Using the product rule we have:f(x) = cos(2x) f'(x) = -2sin(2x)g(x) = x^-1/2 g'(x) = 1/2x^-3/2So lastly we know that h(x) = f(x)g'(x) + f'(x)g(x)So using what we've found out we can say that h(x) = (cos(2x))/(2x^3/2)-(2sin(2x))/x^1/2Once again simplifying gives us(-2x^1/2sin(2x)-1/2x^-1/2cos(2x))/xNeed help with Maths?One to one online tuition can be a great way to brush up on your Maths a Free Meeting with one of our hand picked tutors from the UK’s top universitiesFind a tutor
W tym nagraniu wideo omawiam metodę rozwiązywania równań trygonometrycznych i pokazuję jak najlepiej rysować wykresy sinusa i nagrania: 25 \(2\sin x+3\cos x=6\) w przedziale \((0,2\pi )\) ma rozwiązań rzeczywistych. dokładnie jedno rozwiązanie rzeczywiste. dokładnie dwa rozwiązania rzeczywiste. więcej niż dwa rozwiązania rzeczywiste. ARozwiąż równanie \(\sin6x + \cos3x = 2\sin3x + 1\) w przedziale \(\langle 0, \pi \rangle\).\(x = 0, x = \frac{2}{3}\pi , x = \frac{7}{18}\pi, x = \frac{11}{18}\pi.\)Rozwiąż równanie \(\cos 3x+\sin 7x=0\) w przedziale \(\langle0,\pi\rangle\).\(x\in \left\{\frac{3}{8}\pi,\frac{7}{8}\pi,\frac{3}{20}\pi,\frac{7}{20}\pi,\frac{11}{20}\pi,\frac{15}{20}\pi,\frac{19}{20}\pi\right\}\)Rozwiąż równanie \((\cos x) \Biggl[ \sin \biggl(x - \frac{\pi}{3} \biggl) + \sin \biggl(x + \frac{\pi}{3} \biggl)\Biggl] = \frac{1}{2}\sin x\). \(x \in \biggl\{-\frac{\pi}{3} + 2k\pi, k\pi, \frac{\pi}{3} + 2k\pi\biggl\}\)Rozwiąż równanie \( \sqrt{3}\cdot \cos x=1+\sin x \) w przedziale \( \langle 0, 2\pi \rangle \) . \(x=\frac{3\pi }{2}\) lub \(x=\frac{\pi }{6}\)Dane jest równanie \(\sin x = a^2 + 1\), z niewiadomą \(x\). Wyznacz wszystkie wartości parametru \(a\), dla których dane równanie nie ma rozwiązań.\(a\in \mathbb{R} \backslash \{0\}\)Wyznacz, w zależności od całkowitych wartości parametru \(a\gt 0\), liczbę różnych rozwiązań równania \(\sin (\pi ax)=1\) w przedziale \(\left\langle 0,\frac{1}{a} \right\rangle \).Rozwiąż równanie \(\sin 2x+2\sin x+\cos x+1=0\), dla \(x\in \langle -\pi ,\pi \rangle \).\(-\frac{5\pi }{6}\), \(-\frac{\pi }{6}\), \(-\pi \), \(\pi \)Wyznacz wszystkie wartości parametru \(\alpha \in \langle 0;2\pi \rangle \), dla których równanie \((x^2-\sin 2\alpha )(x-1)=0\) ma trzy rozwiązania.\(\alpha \in (0;\frac{\pi }{4})\cup (\frac{\pi }{4},\frac{\pi }{2})\cup (\pi ;\frac{5\pi }{4})\cup (\frac{5\pi }{4};\frac{3\pi }{2})\)Wyznacz wszystkie wartości parametru \(a\), dla których równanie \((\cos x+a)\cdot (\sin^{2} x-a)=0\) ma w przedziale \(\langle 0,2\pi \rangle \) dokładnie trzy różne rozwiązania.\(a=1\)Rozwiąż równanie \(\sin \left(x+\frac{\pi}{6}\right)+\cos x=\frac{3}{2}\) w przedziale \(\langle 0; 2\pi \rangle \). \(x\in \left\{0, \frac{\pi}{3}, 2\pi \right\}\)Dana jest funkcja \(f(x)=\cos x\) oraz funkcja \(g(x)=f\left(\frac{1}{2}x\right)\). Rozwiąż graficznie i algebraicznie równanie \(f(x)=g(x)\). \(x=\frac{4}{3}k\pi \land k\in \mathbb{Z} \)Rozwiąż równanie \(\sin x|\cos x|=0,25\), gdzie \(x\in \langle 0; 2\pi \rangle\).\(x=\frac{\pi }{12}\) lub \(x=\frac{5\pi }{12}\) lub \(x=\frac{7\pi }{12}\) lub \(x=\frac{11\pi }{12}\)Rozwiąż równanie \(\cos2x + 2 = 3\cos x\).\(x=\frac{\pi }{3}+2k\pi \) lub \(x=-\frac{\pi }{3}+2k\pi \) lub \(x=2k\pi \) gdzie \(k\in \mathbb{Z} \)Rozwiąż równanie \(\cos 2x + \cos x + 1 = 0\) dla \(x\in \langle 0,2\pi \rangle\).\(x=\frac{\pi }{2}\) lub \(x=\frac{3\pi }{2}\) lub \(x=\frac{2\pi }{3}\) lub \(x=\frac{4\pi }{3}\)Rozwiąż równanie \(\cos 2x+3\cos x=-2\) w przedziale \(\langle 0,2\pi \rangle \).
cos 2x 1 2